The strict topology in non-Archimedean vector-valued function spaces
نویسندگان
چکیده
منابع مشابه
Compactness in Vector-valued Banach Function Spaces
We give a new proof of a recent characterization by Diaz and Mayoral of compactness in the Lebesgue-Bochner spaces L X , where X is a Banach space and 1 ≤ p < ∞, and extend the result to vector-valued Banach function spaces EX , where E is a Banach function space with order continuous norm. Let X be a Banach space. The problem of describing the compact sets in the Lebesgue-Bochner spaces LpX , ...
متن کاملNon-archimedean Metrics in Topology
We shall find the following necessary and sufficient conditions: I. the space is metrizable (cf. Nagata [l], Smirnof [2]), II. the space is strongly O-dimensional. Property II means that any two closed disjoint sets in the space can be separated (by the empty set). We shall prove furthermore that the conditions I and II are equivalent to the following topological properties: the space is a Haus...
متن کاملAtomic characterizations of vector-valued function spaces
The rst part of this diploma thesis deals with the topic of nding equivalent norms and characterizations for vector-valued Besov and Triebel-Lizorkin spaces Bs p,q(E) and F s p,q(E). We will deduce general criteria by transferring and extending a theorem of Bui, Paluszy«ski and Taibleson from the scalar to the vector-valued case. By using special norms and characterizations we will derive neces...
متن کاملFixed Point Theorems for Single Valued Mappings Satisfying the Ordered non-Expansive Conditions on Ultrametric and Non-Archimedean Normed Spaces
In this paper, some fixed point theorems for nonexpansive mappings in partially ordered spherically complete ultrametric spaces are proved. In addition, we investigate the existence of fixed points for nonexpansive mappings in partially ordered non-Archimedean normed spaces. Finally, we give some examples to discuss the assumptions and support our results.
متن کاملOperator Valued Series and Vector Valued Multiplier Spaces
Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous linear operators from $X$ into $Y$. If ${T_{j}}$ is a sequence in $L(X,Y)$, the (bounded) multiplier space for the series $sum T_{j}$ is defined to be [ M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}% T_{j}x_{j}text{ }converges} ] and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae (Proceedings)
سال: 1984
ISSN: 1385-7258
DOI: 10.1016/1385-7258(84)90019-2